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ABSTRACT
Background: Area under the concentration–time curve (AUC) is a
pharmacokinetic parameter that represents overall exposure to a drug.
For selected anti-infective agents, pharmacokinetic–pharmacodynamic
parameters, such as AUC/MIC (where MIC is the minimal inhibitory
concentration), have been correlated with outcome in a few studies. A
limited-sampling strategy may be used to estimate pharmacokinetic
parameters such as AUC, without the frequent, costly, and inconvenient
blood sampling that would be required to directly calculate the AUC.

Objective: To discuss, by means of a systematic review, the strengths,
limitations, and clinical implications of published studies involving a
limited-sampling strategy for anti-infective agents and to propose
improvements in methodology for future studies.

Methods: The PubMed and EMBASE databases were searched using
the terms “anti-infective agents”, “limited sampling”, “optimal sam-
pling”, “sparse sampling”, “AUC monitoring”, “abbreviated AUC”,
“abbreviated sampling”, and “Bayesian”. The reference lists of retrieved
articles were searched manually. Included studies were classified accord-
ing to modified criteria from the US Preventive Services Task Force. 

Results: Twenty studies met the inclusion criteria. Six of the studies
(involving didanosine, zidovudine, nevirapine, ciprofloxacin, efavirenz,
and nelfinavir) were classified as providing level I evidence, 4 studies
(involving vancomycin, didanosine, lamivudine, and lopinavir–
ritonavir) provided level II-1 evidence, 2 studies (involving saquinavir
and ceftazidime) provided level II-2 evidence, and 8 studies (involving
ciprofloxacin, nelfinavir, vancomycin, ceftazidime, ganciclovir, 
pyrazinamide, meropenem, and alpha interferon) provided level III 
evidence. All of the studies providing level I evidence used prospectively
collected data and proper validation procedures with separate, randomly
selected index and validation groups. However, most of the included
studies did not provide an adequate description of the methods or the
characteristics of included patients, which limited their generalizability. 

Conclusions: Many limited-sampling strategies have been developed for
anti-infective agents that do not have a clearly established link between
AUC and clinical outcomes in humans. Future studies should first 
determine if there is an association between AUC monitoring and 
clinical outcomes. Thereafter, it may be worthwhile to prospectively
develop and validate a limited-sampling strategy for the particular 
anti-infective agent in a similar population. 

Key words: limited-sampling strategy, anti-infectives, pharmacokinetics,
therapeutic drug monitoring

RÉSUMÉ
Contexte : L’aire sous la courbe de la concentration en fonction du temps
(ASC) est un paramètre pharmacocinétique qui représente l’exposition
globale d’un patient à un médicament. En ce qui a trait à des agents 
anti-infectieux sélectionnés, les paramètres pharmacocinétiques et 
pharmacodynamiques, comme l’ASC/CMI (concentration minimale
inhibitrice), ont été corrélés avec les résultats cliniques dans un nombre
limité d’études. On peut utiliser une stratégie de prélèvements limités pour
estimer la valeur des paramètres pharmacocinétiques, comme l’ASC, sans
avoir à recourir aux prélèvements de sang fréquents, coûteux et peu 
pratiques qui sont nécessaires pour calculer directement l’ASC. 

Objectif : Discuter, au moyen d’une analyse systématique, les forces, les
limites et les implications cliniques des études publiées comportant 
une stratégie de prélèvements limités pour les agents anti-infectieux et 
proposer des améliorations à la méthodologie de futures études.

Méthodes : Les bases de données PubMed et EMBASE ont été interrogées
en utilisant les termes « agents anti-infectieux » (« anti-infective agents »),
« prélèvements limités » (« limited sampling »), « prélèvements optimaux »
(« optimal sampling »), « prélèvements parcimonieux » (« sparse sampling »),
surveillance de l’ASC (« AUC monitoring »), ASC abrégée (« abbreviated
AUC »), prélèvements simplifiés (« abbreviated sampling ») et bayésien 
(« Bayesian »). Les listes de référence des articles extraits ont 
été examinées manuellement. Les études retenues ont été classées selon 
des critères modifiés du US Preventive Services Task Force. 

Résultats : Vingt études ont satisfait aux critères d’inclusion. Six de ces
études (portant sur la didanosine, la zidovudine, la névirapine, la
ciprofloxacine, l’éfavirenz et le nelfinavir) ont été classées comme 
fournissant des données probantes de niveau I, quatre études (portant sur
la vancomycine, la didanosine, la lamivudine et le lopinavir–ritonavir) ont
fourni des données probantes de niveau II-1, deux études (portant sur le
saquinavir et la ceftazidime) ont fourni des données probantes de niveau
II-2, et huit études (portant sur la ciprofloxacine, le nelfinavir, la 
vancomycine, la ceftazidime, le ganciclovir, la pyrazinamide, le méropenem
et l’interféron alpha) ont fourni des données probantes de niveau III.
Toutes les études fournissant des données probantes de niveau I ont utilisé
des données recueillies prospectivement et des méthodes de validation
adéquates avec un groupe de référence et un groupe de validation distincts
et choisis au hasard. Cependant, la plupart des études incluses n’ont pas
fourni une description adéquate des méthodes ou des caractéristiques des
patients admis, ce qui a limité leur généralisabilité. 

Conclusions : Plusieurs stratégies de prélèvements limités ont été 
développées pour les agents anti-infectieux et elles ne comportent pas de
lien clairement établi entre l’ASC et les résultats cliniques chez l’humain.
Les études ultérieures devraient d’abord déterminer s’il existe un lien entre 
la surveillance de l’ASC et les résultats cliniques. Il pourra par la suite
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INTRODUCTION

It has been proposed that therapeutic drug monitoring is warranted when a drug exhibits a narrow therapeutic range,
therapy is of sufficient duration, pharmacokinetic parameters
have been correlated with clinical outcome, the pharmaco -
dynamic response is not readily assessable, and/or the drug
assay results provide more information than clinical judgement
alone.1 For a drug that is suitable for therapeutic drug 
monitoring, measurement of the area under the concentration–
time curve (AUC) is considered a good representation of 
overall exposure to the drug. For selected anti-infective agents,
pharmacokinetic parameters such as AUC/MIC (drug 
exposure relative to the bacterial minimum inhibitory 
concentration) and peak/MIC (peak concentration relative to
the bacterial minimum inhibitory concentration) have been
correlated with outcomes in animal, in vitro, and a small 
number of human studies.2 In their review of pharmacokinetic
and pharmacodynamic considerations for selecting agents 
for outpatient parenteral antimicrobial therapy, Slavik and 
Jewesson2 discussed several anti-infectives for which AUC/MIC
may correlate with clinical efficacy. Such agents include, but are
not limited to, fluoroquinolones (ciprofloxacin, levofloxacin,
gatifloxacin) and quinupristin–dalfopristin.2

The use of AUC is limited, however, by the large number
of blood samples required for its accurate determination. As
many as 10 or more samples may be needed to characterize
AUC in the research setting, but in clinical practice such 
frequent blood sampling is impractical, time-consuming, costly,
and, for infants, potentially unethical. It also may not be 
possible to obtain blood samples frequently from elderly or 
critically ill patients with poor venous access.

One proposed method of reducing the cost and inconve-
nience of frequent sampling is the use of limited-sampling
strategies. A limited-sampling strategy is a method of charac-
terizing pharmacokinetic parameters, particularly the AUC,
using relatively few blood samples, usually 3 or fewer. The
methods used to develop and validate limited-sampling 
strategies have been reviewed elsewhere.3-7 Briefly, these
approaches are usually developed using either multiple 
regression analysis with a stepwise approach or population 
estimates with the Bayesian approach. Multiple regression 
analysis determines the relation between the dependent variable
(usually AUC) and various independent variables (i.g., timed
concentrations from serially collected blood samples). The
resulting limited-sampling strategy is described as follows: 

AUC = b + m1C(t1) + m2C(t2) + m3C(t3)+ . . . miC(ti)
where C(t) is the drug concentration at time ti, b represents the
y-intercept, and mi represents the slope of the equation at time
ti.3-7 The Bayesian method blends population estimates with
data from individual patients; as such, both population and
individual data are required. If population estimates are
unavailable, the index data set can be used to determine them.
Then, one or more timed concentrations from the validation
data set are entered as individual data to predict the AUC.
Equations with a high coefficient of determination (r 2) are 
typical candidates for a limited-sampling strategy, which is then
subjected to testing with a validation data set.3-7 Acceptable
methods for validation include data splitting (ideally by 
randomly assigning patients to index and validation groups),
cross-validation (multiple data splitting), jackknife resampling,
and bootstrap resampling. Bias and the precision of limited-
sampling strategies are often presented as mean prediction error
and mean squared prediction error, according to the methods
of Scheiner and Beal.8 A commonly accepted range of bias 
and precision values is 15% to 20%. Another important
requirement of a clinically useful limited-sampling strategy
would be a maximum of 3 conveniently timed (e.g., obtained
within 4 h after administration of a dose) concentrations.3-7

The objectives of this review were to critically evaluate
published limited-sampling strategies for anti-infective agents,
to discuss the clinical implications of these strategies as they
apply to anti-infectives, and to propose improvements in
methodology for future studies of limited-sampling strategies.

METHODS

The PubMed (January 1966 to December 2008) and
EMBASE (January 1980 to December 2008) databases were
searched to identify potential studies for review. The following
search terms were used: “anti-infective agents”, “limited 
sampling”, “optimal sampling”, “sparse sampling”, “AUC 
monitoring”, “abbreviated AUC”, “abbreviated sampling”, and
“Bayesian”. The reference lists of retrieved articles were also
searched manually.

Studies were retrieved if the abstract described the use of
limited, optimal, or sparse blood sampling for monitoring an
anti-infective agent. Studies published in abstract form were
excluded. Studies published in full were included if they
described the development of limited-sampling strategies to
predict AUC or peak concentrations for anti-infective agents in
humans and were written in English. Studies conducted in
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s’avérer utile de développer et de valider prospectivement une stratégie de
prélèvements limités pour un agent anti-infectieux particulier chez une
population de patients similaire. 

Mots clés : stratégies de prélèvements limités, agents anti-infectieux, 
pharmacocinétique, surveillance thérapeutique pharmacologique
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healthy volunteers or in patients without an active infection
were excluded; the results of such studies cannot be extrapolated
to patients with active infections because of potential differ-
ences in pharmacokinetic–pharmacodynamic parameters. Also
excluded were studies that did not suggest sampling times and
those that merely described a previously developed and validated
limited-sampling strategy.

Included studies were classified according to their levels 
of evidence. Because there are no formalized criteria for 
determining levels of evidence for studies of limited-sampling 
strategies, the criteria were adapted from those developed by
the US Preventive Services Task Force.9 This adaptation has
been used successfully in previous reviews of limited-sampling
strategies of immunosuppressants5 and chemotherapy agents.6,7

Studies were classified into 4 categories (level I, II-1, II-2, or
III) according to criteria presented in Table 1.5-7,9

RESULTS

Thirty-four studies met the initial inclusion criteria.10-44

Fourteen of these studies10-24 were excluded: 4 were conducted
in healthy volunteers,10-13 1 involved volunteers with cystic
fibrosis who did not have an active infection,14 8 did not 
suggest sampling times,14-22 and 2 studied previously validated
limited-sampling strategies in new populations.23,24 Table 2
summarizes the characteristics of the included studies25-44

according to their levels of evidence. The following information
was extracted from each study: level of evidence, the anti-
infective agent, the population for derivation of the limited-
sampling strategy, the sampling times investigated, the suggested
timed samples, the equation(s) for the limited-sampling strategy,
r (the correlation coefficient) or r 2, the percent bias for the 
validation group, the percent precision, and additional 
comments.

Two studies for each of the following drugs described 
limited-sampling strategies (Table 2): ciprofloxacin (level I and
level III evidence, respectively), didanosine (level I and level II-
1 evidence, respectively), nelfinavir (level I and level III 
evidence, respectively), vancomycin (level II-1 and level III 
evidence, respectively) and ceftazidime (level II-2 and level III
evidence, respectively). Limited-sampling strategies were
described in a single study for each of the following agents:
zidovudine (level I evidence), nevirapine (level I evidence),
efavirenz (level I evidence), lamivudine (level II-1 evidence),
lopinavir–ritonavir (level II-1), saquinavir (level II-2 evidence),
ganciclovir (level III evidence), pyrazinamide (level III 
evidence), meropenem (level III evidence) and alpha interferon
(level III evidence). 

DISCUSSION

Study Strengths and Limitations

Six studies of limited-sampling strategies were considered
to present evidence of the highest quality (level I), describing
strategies for didanosine,25 zidovudine,26 nevirapine,27

ciprofloxacin,28 efavirenz,29 and nelfinavir30 (Table 2). Each
study used prospectively collected data and proper validation
procedures. All 6 studies randomized pharmacokinetic data
into index and validation groups, and 5 of the studies clearly
randomized the pharmacokinetic data into independent data
sets.25,27-30 Each study illustrated the potential utility of limited-
sampling strategies by requiring only 1 or 2 blood samples to
predict AUC, with minimal bias and relatively good precision.
The level I studies of didanosine and zidovudine also provided
1-sample limited-sampling strategies to predict a second 
pharmacokinetic parameter, maximum drug concentration
(Cmax).25,26

Of the level I studies, the study of a validated limited-
sampling strategy for nevirapine probably provided the most

Table 1. Classification of studies of limited sampling strategies5-7,9

Level of Evidence Description
Level I (evidence obtained from at least one properly • Used prospectively collected data
randomized controlled trial) • Had proper validation procedures (separate validation 

group, jackknife method, or bootstrap method)
• Assigned data randomly into index and validation groups 
(not applicable when using jackknife and bootstrap 
methods) 

• Studies assumed to be prospective even if not explicitly 
stated by authors

Level II-1 (evidence obtained from well-designed controlled • Used prospectively collected data
trials without randomization) • Had proper validation procedures

• Lacked random assignment of data into index and 
validation groups

Level II-2 (evidence obtained from well-designed cohort or • Used retrospective data
case–control analytic studies, preferably from more than • Had proper validation procedures regardless of
one centre or research group) randomization
Level III (opinions of respected authorities, • Did not have proper validation procedures
based on clinical experience; descriptive studies and 
case reports; or reports of expert committees)
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flexibility and convenience for clinical use.27 In that study, all 14
sampling data points were used to determine a 1-sample (i.e., a
random sample between 2 and 4 h after dosing) limited-
sampling strategy that predicted the AUC with minimal bias
and good precision.27 This single “random” sample would be a
convenient method for future research to determine if the AUC
for nevirapine correlates with clinical outcome. A distinctive
strength of the efavirenz study was that concomitant medica-
tions were accounted for in the randomization scheme.29 Of the
level I studies, the nelfinavir trial had the largest sample size,
with random assignment of 99 HIV-infected patients to the
index (n = 49) and validation (n = 50) groups.30

Five anti-infective agents were each studied in 2 separate
trials, as described in Table 2.25,28,30-32,35,38,39,42,43 Classification
according to level of evidence is important when there are 
discrepant results between studies for suggested sampling times
to characterize pharmacokinetic parameters. As a general guide-
line, clinicians may choose to place more weight on results 
of studies classified as having a higher level of evidence. 
For example, although the 2 ceftazidime studies suggested 
2 different 4-point sampling strategies to characterize AUC,
one study had level II-2 evidence35 and the other had level III
evidence.38 The 2 didanosine studies also yielded discordant
limited-sampling strategies.25,32 Although this may have been
due to differences in the populations studied (adults versus 
children), one study had level I evidence and the other level 
II-1 evidence. The 2 studies that described limited-sampling
strategies for ciprofloxacin also produced discordant results.28,43

The level III study required an additional sample at 2.5 h to
best characterize total clearance.43 However, when restricted to
only 2 samples, the selected times were similar to those 
suggested in the level I study.28 The 2 nelfinavir studies were 
difficult to compare, as they characterized 2 different pharma-
cokinetic parameters (AUC0–12h and AUC0–8h) and provided
level I and level III evidence, respectively.30,39 The 2 vancomycin
studies also developed limited-sampling strategies for 
prediction of different parameters (clearance and concentra-
tion), but again were classified as providing level II-1 and level
III evidence, respectively.31,42

In general, the studies identified in this systematic review
had small sample sizes, the methods and patient populations
were not well described, and a variety of methods were used to
determine optimal sampling times (Table 2). Two studies37,41

did not report bias or precision for the variations in sampling
times used in development of the limited-sampling strategy;
instead, only descriptive statistics of clearance were provided.
Methods for determining the sampling times to be used in the
limited-sampling strategies included arbitrarily selecting times43

and use of software to obtain D-optimal times.31,35,37,38 Use of a
computer software program to determine optimal sampling
times may yield times that are impractical, as was the case for
one ceftazidime study.35

One study, considered to report level I evidence, random-
ized data from 83 pharmacokinetic curves into separate index
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and validation groups, but it is unclear if the 2 groups 
represented 2 independent sets of patients, as the data were
obtained from only 62 patients.26 The study also did not 
provide information about the baseline characteristics of the
patients, so it was assumed that the “patients” who “ingested
their usual morning dose” were receiving zidovudine therapy
for HIV and were not volunteers.26 It would be difficult to
apply this limited-sampling strategy in practice, as little is
known about the underlying population that was studied. It
has been previously shown that a limited-sampling strategy for
a drug cannot always be extrapolated to a population other
than the one studied. For example, a limited-sampling strategy
for didanosine was evaluated in 13 HIV-infected children in 
a study with level II-1 evidence,32 but the recommended 
equations did not reliably predict the AUC in a study of HIV-
infected adults.25 In addition to the expected differences 
in pharmacokinetics between adults and children, this discrep-
ancy might also have resulted from a difference in the rigour of
the evaluations.

Three studies, all considered to present level I evidence,
did not report concomitant medications or medical conditions,
which limits the generalizability of their findings.25,27,28 In studies
of antiretroviral agents, which have numerous potential 
pharmacokinetic interactions, it would be important to note
concomitant antiretrovirals and other medications. In the 
studies with level I evidence that were identified in this review,
patients were prospectively and randomly assigned to index and
validation groups, but because the studies were small, it is 
possible that not all characteristics were balanced between the
groups.

A ciprofloxacin study of level I evidence (n = 55) included
20 patients with cystic fibrosis, all less than 25 years of age.28

Given the pharmacokinetic characteristics specific to patients
with cystic fibrosis, such as increased clearance, as well as the
pharmacokinetic differences across pediatric and adolescent age
groups, it would be desirable to develop and validate a limited-
sampling strategy in a study of patients with cystic fibrosis
within a narrower age range. The ciprofloxacin study28 also used
4 different sets of sampling times, ranging from 1 to 13 
samples, and selected times on the basis of the dosing regimen
used. It would be preferable to characterize a full pharmacoki-
netic profile for several patients with similar characteristics, all
of whom received the same dose, and to attempt validation for
all possible combinations of sampling times, to obtain the most
precise and least biased limited-sampling strategy. A level I
study of a limited-sampling strategy for efavirenz exemplified
proper validation procedures, in that patients were randomly
assigned to 3 different sets of index and validation groups
according to concomitant interacting medications.29 However,
that study also assessed only 3 single sampling times in its 
evaluation. Although full pharmacokinetic profiles were
obtained, the reason for the authors’ choice of 3 time points 
(8, 12, and 16 h) to estimate the AUC and trough (at 24 h) was
not stated.29

A study of nelfinavir-treated patients, which had level I
evidence, provided some baseline comparative information on
comorbid conditions between index and validation groups; it
also had a more complete evaluation of sampling times than the
other level I studies.30 However, little information on concomi-
tant medication was provided, and, as discussed below, the use
of nelfinavir has now fallen out of favour.

Clinical Implications

It is difficult to draw conclusions from the limited-
sampling strategies that have been described in the literature to
date, given their methodologic flaws and limitations. As well,
discrepancies in results between studies may be attributable to
the differences between the patient subpopulations being 
studied. For example, in addition to pathophysiologic 
parameters (e.g., age, sex, disease states), results for limited-
sampling strategies may vary according to dosing schedules,
drug bioavailability, and other pharmacokinetic parameters
such as elimination half-life. More importantly, there is a lack
of evidence supporting the need for therapeutic drug monitoring
for the majority of anti-infectives for which limited-sampling
strategies have been developed. In other words, even if clinical
efficacy and AUC are related, a limited-sampling strategy may
be of limited clinical utility. For example, concentrations of 
the non-nucleoside reverse transcriptase inhibitors (NNRTIs)
nevirapine and efavirenz are not routinely monitored in 
practice, because clinicians are able to monitor efficacy and 
toxicity clinically and the evidence related to therapeutic drug
monitoring for these agents is conflicting.45 Therapeutic drug
monitoring of the nucleoside reverse transcriptase inhibitors,
such as didanosine, stavudine, zidovudine, and lamivudine, is
also not routine practice.46,47 These agents require intracellular
activation, and the intracellular concentration of active drug
does not correlate well with the plasma concentration of the
parent compound.

Although correlation between pharmacokinetic–
pharmacodynamic data and microbiological cure has been
demonstrated in vitro and in animal models, there are limited
prospective human data correlating pharmacokinetic–pharmaco-
dynamic parameters with clinical outcomes. For the �ß-lactam
anti-infectives, such as ceftazidime and meropenem, which were
included in this review, it appears that time above MIC (t >
MIC) is actually the pharmacokinetic–pharmacodynamic
parameter that correlates best with microbiological and clinical
efficacy.2 The t > MIC parameter represents the time that the
antibiotic concentration remains above a certain threshold 
concentration, usually a concentration 4 to 5 times greater than
the MIC. These data are again based largely on animal and in
vitro data. However,, if t > MIC is the parameter that correlates
best with efficacy, as has been traditionally thought for the time-
dependent ß−lactams, determining the AUC would not be
required. Therefore, limited-sampling strategies for the ß-lactam
anti-infectives would not be necessary.



population other than the one studied, the method must first be
validated in the new population. 

Conclusions

To our knowledge, this is the first systematic review of 
limited-sampling strategies for anti-infective agents. The 
findings indicate that although a number of such strategies have
been developed, the important link between limited-sampling
strategies and clinical outcomes has not yet been established.
Despite the identification of 6 level I studies in this review, it is
difficult to draw conclusions from the majority of studies of
limited-sampling strategies that have been reported in the 
literature to date, given their methodologic flaws and the limited
data correlating pharmacokinetic–pharmacodynamic monitor-
ing with clinical outcomes of anti-infective therapy. Future
studies should first determine if monitoring pharmacokinetic–
pharmacodynamic parameters yields better predictions of 
efficacy and/or toxicity of an anti-infective agent than no 
monitoring at all. Once an association between AUC monitoring
and clinical outcomes has been clearly established, it may be
worthwhile to prospectively develop and evaluate a limited-
sampling strategy for the particular anti-infective agent in a
similar population. 
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